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Opial inequalities for a conformable
∆-fractional calculus on time scales

Tatjana Mirković, Tatjana Bajić

Abstract. In this paper, an Opial-type inequality is introduced on
time scale for a conformal ∆-fractional differentiable function of order α,
α ∈ (0, 1]. In the case where the certain weight functions are included,
one generalization of the Opial inequality is proved using conformal
∆-fractional calculus on time scales. Moreover, for n times conformal
∆-fractional differentiable function on time scale, n ∈ N, an Opial in-
equality is obtained. In particular, through examples, the main results
from the paper are compared with classical ones on generalized time
scales.

At the end of the paper, we indicate possible applications of
the obtained Opial-type inequalities in the consideration of stochas-
tic dynamical equations where conformal ∆-fractional calculus on time
scales is included, which requires further research.

1. Introduction

A time scale is any nonempty closed subset of the real line. The theory
of time scales is a fairly new area of research. It was introduced in Stefan
Hilger’s Ph.D. thesis ([14]) as a way to unify the seemingly disparate fields
of difference equations and differential equations. We begin by giving the
basic calculus of time scales (see [3, 5]).

Let T be a nonempty closed subset of the real line.

Definition 1. For t ∈ T, we define the forward and backward jump opera-
tors σ, ρ : T → T by σ(t) = inf{s ∈ T | s > t} and ρ(t) = sup{s ∈ T | s < t}.

If σ(t) > t, we say that t is right-scattered, whereas if ρ(t) < t, we say that
t is left-scattered. If t < supT and σ(t) = t, then t is called right-dense and
if t > inf T and ρ(t) = t, then t is called left-dense. The graininess functions
µ, ν : T → [0,∞) are defined by µ(t) = σ(t)− t and ν(t) = t− ρ(t). If T has
a left-scattered maximum t1, then Tk = T − {t1}, otherwise Tk = T. If T
has a right-scattered minimum t2, then Tk = T− {t2}, otherwise Tk = T.
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Definition 2. A function f : T → R is called rd-continuous provided it is
continuous at all right-dense points in T and its left-sided limits exist (finite)
at all left-dense points in T.

Definition 3. A function f : T → R is called regulated provided its right-
sided limits exist (finite) at all right-dense points in T and its left-sided limits
exist (finite) at all left-dense points in T.

Definition 4. Let f : T → R be a function and let t ∈ Tk. If there exists
a number a ∈ R such that for all ϵ > 0, there exists a neighborhood U of t
with

|f(σ(t))− f(s)− a (σ(t)− s) | ≤ ϵ|σ(t)− s|,
for all s ∈ U , then f is said to be ∆-differentiable at t and we call a the
∆-derivative of f at t and denote it by f∆(t).

Theorem 1. Assume that f : T → R and let t ∈ Tk. Then:
1. If f is differentiable at t, then f is continuous at t;
2. If f is continuous at t and t is right scattered, then f is ∆ - differ-

entiable at t, with

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

Theorem 2. Assume f, g : T → R are ∆-differentiable at t ∈ Tk. Then the
following statements are valid.

1. The sum f + g : T → R is ∆-differentiable at t with

(f + g)∆(t) = f∆(t) + g∆(t).

2. For any constant c, cf : T → R is ∆-differentiable at t with

(cf)∆(t) = cf∆(t).

Definition 5. A function F : T → R is called ∆-antiderivative of f : T → R,
provided F∆(t) = f(t) holds for all t ∈ Tk. Then ∆-integral of f on [a, b]T
is defined by ∫ b

a
f(t)∆t = F (b)− F (a), a, b ∈ T.

One of the main subjects of the qualitative analysis on time scales is
to prove dynamic inequalities. The content of this paper is motivated by
some basic dynamic inequalities given in the articles [4, 13]. In particular,
Bohner and Kaymakcalan in [8] introduced a dynamic Opial inequality on
time scales, proving that

(1)
∫ h

0
|(f + fσ)f∆|(t)∆t ≤ h

∫ h

0
|f∆|2(t)∆t,

where 0, h ∈ T, h > 0, f : [0, h] ∩ T → R is ∆-differentiable with f(0) = 0
and fσ(t) = f(σ(t)). The dynamic Opial inequality (1) contains both the
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classical continuous Opial inequality ([8], Theorem 1.1) and the classical
discrete Opial inequality ([8], Theorem 1.2) as special cases.

On the other hand, a conformable fractional calculus on an arbitrary
time scale is a natural extension of the conformable fractional calculus (for
example, see [7, 18]). As the fractional calculus always attracted interest of
researchers due to its numerous applications in many fields (for example,
see the references cited within [18]), we were interested to study Opial-type
inequalities using conformable ∆-fractional calculus on time scales.

This paper is organized as follows. The second section is dedicated to the
basic notions of conformable ∆-fractional derivative and integral on time
scales. In the third section, we present the main results through three the-
orems. The first theorem (Theorem 8) introduces an Opial inequality on
time scale for a conformal ∆-fractional differentiable function of order α,
α ∈ (0, 1], and the second (Theorem 9), using conformable ∆-fractional cal-
culus, proves one generalization of the Opial inequality on time scale when
the certain weight functions are included. The third theorem (Theorem 10)
is dedicated to an Opial inequality for n times conformal ∆-fractional dif-
ferentiable function on time scale, where n ∈ N. Through examples, the
main results from this paper are compared with classical ones on gener-
alized time scales. In conclusions, we indicate possible applications of the
obtained Opial-type inequalities in the consideration of stochastic dynamical
equations, where conformal ∆-fractional calculus on time scale is included,
which requires further research.

2. Preliminaries

Fractional calculus is nowadays one of the most intensively developing
areas of mathematical analysis (see [1,15,17]). We present the basic concepts
of conformable ∆-fractional derivative and integral on time scales, which
were introduced in [18].

In the following, we assume that α ∈ (0, 1] unless it is emphasized that a
non-integer value of α, α > 0, belongs to some other interval.

Definition 6. Assume f : T → R is a function and let t ∈ Tk. Then we
define Tα(f

∆)(t) to be the number (provided it exists) with the property
that given any ϵ > 0, there exists a neighborhood U of t such that

|(f(σ(t))− f(s))(σ(t))1−α − Tα(f
∆)(t)(σ(t)− s)| ≤ ϵ|σ(t)− s|,

for all s ∈ U . We call Tα(f
∆)(t) the conformable delta (∆) fractional deriva-

tive of f of order α at t. Moreover, we say that f is conformable ∆-fractional
differentiable of order α on Tk provided Tα(f

∆)(t) exists for all t ∈ Tk. The
function Tα(f

∆)(t) : Tk → R is then called the conformable ∆-fractional
derivative of f of order α on T k. We define the conformable ∆-fractional
derivative at 0 as

Tα(f
∆)(0) = lim

t→0
Tα(f

∆)(t).
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Theorem 3. Let T be a time scale, t ∈ Tk and α ∈ (0, 1]. Then we have
the following.

1. If f is conformable ∆-fractional differentiable of order α at t, then
f is continuous at t.

2. If f is continuous at t and t is right-scattered, then f is conformable
∆-fractional differentiable of order α at t with

Tα(f
∆)(t) =

f(σ(t))− f(t)

µ(t)
(σ(t))1−α.

3. If t is right-dense, then f is conformable ∆-fractional differentiable
of order α at t if and only if the limit

lim
s→t

f(t)− f(s)

t− s
t1−α

exists as a finite number. In this case,

Tα(f
∆)(t) = lim

s→t

f(t)− f(s)

t− s
t1−α.

4. If f is conformable ∆-fractional differentiable of order α at t, then

f(σ(t)) = f(t) + µ(t)Tα(f
∆)(t)(σ(t))α−1.

Theorem 4. Assume f, g : T → R are conformable ∆-fractional differen-
tiable of order α at t ∈ Tk. Then the following statements are valid.

1. For all constants λ1, λ2, the sum λ1f + λ2g : T → R is conformable
∆-fractional differentiable of order α at t ∈ Tk with

Tα((λ1f + λ2g)
∆)(t) = λ1Tα(f

∆)(t) + λ2Tα(g
∆)(t).

2. The product fg : T → R is conformable ∆-fractional differentiable
of order α at t with

Tα((fg)
∆)(t) = Tα(f

∆)(t)g(t) + f(σ(t))Tα(g
∆)(t)

= f(t)Tα(g
∆)(t) + Tα(f

∆)(t)g(σ(t)).

Definition 7. Assume f : T → R is a regulated function. We define the
indefinite α-conformable ∆-fractional integral of f by

Iα(f
∆)(t) + C =

∫
f(t)∆αt =

∫
f(t)(σ(t))α−1∆t,

where C is an arbitrary constant. Iα(f
∆)(t) is called a pre-antiderivative of

f . We define the Cauchy α-conformable ∆-fractional integral by∫ b

a
f(t)∆αt = Iα(f

∆)(b)− Iα(f
∆)(a),

for all a, b ∈ T. A function Iα(f
∆) : T → R is called an antiderivative of

f : T → R provided (TαIα(f
∆))(t) = f(t), for all t ∈ Tk.
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Theorem 5 (Existence of antiderivatives). For every rd-continuous func-
tion f : T → R, there exists a function Iα(f

∆) such that

(TαIα(f
∆))(t) = f(t).

Theorem 6. Let a, b, c ∈ T, λ1, λ2 ∈ R and f, g : T → R be rd-continuous
functions. Then

1.
∫ b

a
(λ1f(t) + λ2g(t))∆αt = λ1

∫ a

b
f(t)∆αt+ λ2

∫ a

b
g(t)∆αt;

2.
∫ b

a
f(t)∆αt = −

∫ a

b
f(t)∆αt;

3.
∫ b

a
f(σ(t))Tα(g

∆)(t)∆αt = f(b)g(b)−f(a)g(a)−
∫ b

a
Tα(f

∆)(t)g(t)∆αt;

4.
∫ b

a
f(t)Tα(g

∆)(t)∆αt = f(b)g(b)−f(a)g(a)−
∫ b

a
Tα(f

∆)(t)g(σ(t))∆αt;

5.
∫ a

a
f(t)∆αt = 0.

Definition 8. Let T be a time scale, α ∈ (n, n+1], n ∈ N, and f is n times
∆-differentiable at t ∈ Tk × · · · × Tk︸ ︷︷ ︸

n

. We define the conformable ∆-fractional

derivative of f of order α as

Tα(f
∆)(t) = Tα−n(f

∆n+1
)(t).

Theorem 7. Let α ∈ (n, n+ 1], n ∈ N. The following relation is valid

Tα−n(f
∆n+1

)(t) = (σ(t))n+1−αf∆n+1
(t).

3. Main results

For an absolutely continuous function f : [0, h] → R with f(0) = 0, we
have classical continuous Opial inequality (classical Opial integral inequality)∫ h

0
|f(t)f ′(t)|dt ≤ h

2

∫ h

0
|f ′(t)|2dt,

where the equality holds in the case that f(t) = ct for some constant c (for
example, see [8], Theorem 1.4.1).



22 Opial inequalities for a conformable ∆-fractional calculus. . .

Remark 1. Considering that in the time scales calculus,

(f2(t))∆ = ((f + fσ)f∆)(t),

it follows that for T = R, since

(f2(t))′ = 2f(t)f ′(t),

the left-hand side of the dynamic Opial inequality (1) transforms into the
left-hand side of the classical Opial integral inequality multiplied by two.

In this paper, we consider an α-conformable ∆-fractional integral∫ h

0
|f(t)Tα(f

∆)(t)|∆αt

which for α = 1, when Tα(f
∆)(t) = f∆(t) and ∆αt = ∆t, becomes

∆-integral of the form ∫ h

0
|f(t)(f∆)(t)|∆t.

Let T be a time scale such that 0, h ∈ T and h > 0.

Theorem 8. Let α ∈ (0, 1] and f : [0, h] ∩ T → R be conformable
∆-fractional differentiable function of order α on Tk. Then∫ h

0
|f(t)Tα(f

∆)(t)|∆αt ≤
γ

2α

∫ h

0
|Tα(f

∆)(t)|2∆αt+ β

∫ h

0
|Tα(f

∆)(t)|∆αt,

where

γ = min
τ∈[0,h]∩T

ν(τ), ν(τ) = max{τα, hα − τα}, τ ∈ [0, h] ∩ T,

and β = max{|f(0)|, |f(h)|}.

Proof. Denote

y(t) =

∫ t

0
|Tα(f

∆)(s)|∆αs, z(t) =

∫ h

t
|Tα(f

∆)(s)|∆αs.

Then Tα(y
∆)(t) = |Tα(f

∆)(t)| and Tα(z
∆)(t) = −|Tα(f

∆)(t)|. Therefore,
we get

(2)
|f(t)| ≤ |f(t)− f(0)|+ |f(0)|

≤
∫ t

0
|Tα(f

∆)(s)|∆αs+ |f(0)| = y(t) + |f(0)|.

In a similar way, we come to the inequality

|f(t)| ≤
∫ h

t
|Tα(f

∆)(s)|∆αs+ |f(h)| = z(t) + |f(h)|.
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Let τ ∈ [0, h] ∩ T. Relying on (2), we obtain∫ τ

0
|f(t)||Tα(f

∆)(t)|∆αt ≤
∫ τ

0
[y(t) + |f(0)|]Tα(y

∆)(t)∆αt

=

∫ τ

0
y(t)Tα(y

∆)(t)∆αt+ |f(0)|
∫ τ

0
Tα(y

∆)(t)∆αt.

On the other hand, the item 4 from Theorem 6 indicates that the first
integral on the right-hand side in the last inequality takes the form∫ τ

0
y(t)Tα(y

∆)(t)∆αt = y2(τ)− y2(0)−
∫ τ

0
Tα(y

∆)(t)y(σ(t))∆αt,

and since y(σ(t)) ≥ y(t), we obtain∫ τ

0
y(t)Tα(y

∆)(t)∆αt ≤ y2(τ)− y2(0)−
∫ τ

0
Tα(y

∆)(t)y(t)∆αt ≤
y2(τ)

2
.

Therefore, we have∫ τ

0
|f(t)||Tα(f

∆)(t)|∆αt ≤
y2(τ)

2
+ |f(0)|y(τ)

=
1

2

[ ∫ τ

0
|Tα(f

∆)(t)|∆αt
]2

+ |f(0)|
∫ τ

0
|Tα(f

∆)(t)|∆αt.

Applying the Cauchy-Schwarz inequality to the first integral in the last row,
we obtain[ ∫ τ

0
|Tα(f

∆)(t)|∆αt
]2

≤
[( ∫ τ

0
∆αt

) 1
2
(∫ τ

0
|Tα(f

∆)(t)|2∆αt
) 1

2
]2

=

∫ τ

0
(σ(t))α−1∆t

∫ τ

0
|Tα(f

∆)(t)|2∆αt.

Using the expression

(3) (xγ(t))∆ = γ
[ ∫ 1

0
[hx(σ(t)) + (1− h)x(t)]γ−1dh

]
x∆(t),

derivable from the Theorem 1.90 (Chain Rule) given in [9], and the fact that
t ≤ σ(t), we find

(tα)∆ = α

∫ 1

0
[hσ(t) + (1− h)t]α−1dh

≤ α

∫ 1

0
[hσ(t) + (1− h)σ(t)]α−1dh

= α(σ(t))α−1.
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So, replacing (σ(t))α−1 with
( tα
α

)∆
, we get

(4)

∫ τ

0
|f(t)||Tα(f

∆)(t)|∆αt

≤ 1

2

∫ τ

0

( tα
α

)∆
∆t

∫ τ

0
|Tα(f

∆)(t)|2∆αt+ |f(0)|
∫ τ

0
|Tα(f

∆)(t)|∆αt

=
τα

2α

∫ τ

0
|Tα(f

∆)(t)|2∆αt+ |f(0)|
∫ τ

0
|Tα(f

∆)(t)|∆αt.

Similarly, one can show

(5)

∫ h

τ
|f(t)||Tα(f

∆)(t)|∆αt

≤ hα − τα

2α

∫ h

τ
|Tα(f

∆)(t)|2∆αt+ |f(h)|
∫ h

τ
|Tα(f

∆)(t)|∆αt.

By putting ν(τ) = max{τα, hα−τα}, τ ∈ [0, h]∩T, β = max{|f(0)|, |f(h)|}
and adding inequalities (4) and (5), we obtain∫ h

0
|f(t)Tα(f

∆)(t)|∆αt ≤
ν(τ)

2α

∫ h

0
|Tα(f

∆)(t)|2∆αt+ β

∫ h

0
|Tα(f

∆)(t)|∆αt.

The last inequality is true for any τ ∈ [0, h] ∩ T. Therefore, it is also true if
ν(τ) is replaced by γ = minτ∈[0,h]∩T ν(τ) and the proof is complete. □

Example 1. For α = 1 and ∆-differentiable function f : [0, h]∩T → R, the
inequality from Theorem 8 becomes∫ h

0
|f(t)(f∆)(t)|∆t ≤ 1

2

{
γ

∫ h

0
|(f∆)(t)|2∆t+ 2β

∫ h

0
|(f∆)(t)|∆t

}
,

where γ = minτ∈[0,h]∩T ν(τ), ν(τ) = max{τ, h − τ}, τ ∈ [0, h] ∩ T, and
β = max{|f(0)|, |f(h)|}.
Therefore, for α = 1 and T = R we get one type of the continuous Opial
inequality∫ h

0
|f(t)f ′(t)|dt ≤ 1

2

{
γ

∫ h

0
|(f ′(t)|2dt+ 2β

∫ h

0
|f ′(t)|dt

}
,

and for α = 1 and T = Z we obtain one type of the discrete Opial inequality
h−1∑
t=0

|f(t)(f(t+ 1)− f(t))|

≤ 1

2

{
γ

h−1∑
t=0

|f(t+ 1)− f(t)|2 + 2β

h−1∑
t=0

|f(t+ 1)− f(t)|

}
,

where h ∈ Z and h > 0.
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Theorem 9. Let α ∈ (0, 1], and p and q be positive and continuous func-
tions on [0, h] such that

∫ h
0 ∆αt/p(t) < ∞ and q non-increasing. Then, for

conformable ∆-fractional differentiable function f : [0, h] ∩ T → R of order
α with f(0) = 0, we have∫ h

0
qσ(t)|f(t)||Tα(f

∆)(t)|∆αt

≤ 1

2

{∫ h

0

∆αt

p(t)

}{∫ h

0
p(t)q(t)|Tα(f

∆)(t)|2∆αt

}
,

where qσ(t) = q(σ(t)).

Proof. Let us consider the function g(t) defined by the integral

g(t) =

∫ t

0

√
qσ(s)|Tα(f

∆)(s)|∆αs.

Hence we have Tα(g
∆)(t) =

√
qσ(t)|Tα(f

∆)(t)|, and taking into account that
q non-increasing function, we get

|f(t)| ≤
∫ t

0
|Tα(f

∆)(s)|∆αs

≤
∫ t

0

√
qσ(s)

q(t)
|Tα(f

∆)(s)|∆αs =
g(t)√
q(t)

.

Therefore,∫ h

0
qσ(t)|f(t)||Tα(f

∆)(t)|∆αt ≤
∫ h

0
qσ(t)

g(t)√
q(t)

√
qσ(t)

Tα(g
∆)(t)∆αt

≤
∫ h

0
g(t)Tα(g

∆)(t)∆αt ≤
g2(h)− g2(0)

2
.

Finally, using the time scales Cauchy-Schwarz inequality, we arrive at the
following inequality

g2(h)

2
=

1

2

[ ∫ h

0

1√
p(t)

√
p(t)qσ(t)|Tα(f

∆)(t)|∆αt
]2

≤ 1

2

∫ h

0

∆αt

p(t)

∫ h

0
p(t)q(t)|Tα(f

∆)(t)|2∆αt,

which completes the proof. □

Remark 2. In Theorem 9, p and q are continuous functions on the nonempty
closed subset [0, h] of the real line R, which means that p and q are rd-
continuous on [0, h] (see [9], Theorem 1.60). Consequently, based on Theo-
rem 5, the functions p and q have antiderivatives.
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Example 2. For α = 1 and ∆-differentiable function f : [0, h]∩T → R with
f(0) = 0, the inequality from Theorem 9 becomes∫ h

0
qσ(t)|f(t)f∆(t)|∆t ≤ 1

2

{∫ h

0

∆t

p(t)

}{∫ h

0
p(t)q(t)|(f∆)(t)|2∆t

}
,

where p and q are positive and continuous functions on [0, h] such that∫ h
0 ∆t/p(t) < ∞ and q non-increasing. Therefore, for α = 1 and T = R we

get one generalization of the continuous Opial inequality∫ h

0
q(t)|f(t)f ′(t)|dt ≤ 1

2

{∫ h

0

dt

p(t)

}{∫ h

0
p(t)q(t)|f ′(t)|2∆t

}
,

(see [2], Theorem 2.5.1), and for α = 1 and T = Z, we obtain one general-
ization of the discrete Opial inequality,

h−1∑
t=0

q(t+ 1)|f(t)(f(t+ 1)− f(t))|

≤ 1

2

{
h−1∑
t=0

1

p(t)

}{
h−1∑
t=0

p(t)q(t)|f(t+ 1)− f(t)|2
}
,

where h ∈ Z and h > 0.

Theorem 10. Suppose α ∈ (n − 1, n] and m, n ∈ N. Then, for n times
conformable ∆-fractional differentiable function f : [0, h] ∩ T → R with

f(0) = Tα−n+1(f
∆)(0) = · · · = Tα−n+1(f

∆n−1
)(0) = 0,

we have

(6)

∫ h

0
|f(t)|m

∣∣∣Tα−n+1(f
∆n

)(t)
∣∣∣∆αt

≤ 1

m+ 1

( hα−n+1

α− n+ 1

)mn
∫ h

0
|Tα−n+1(f

∆n
)(t)|m+1∆αt.

Proof. We define a function g by the multiple integral

g(t) =

∫ t

0

∫ tn−1

0
· · ·

∫ t2

0

∫ t1

0

∣∣∣Tα−n+1(f
∆n

)(s)
∣∣∣∆αs∆αt1 · · ·∆αtn−2∆αtn−1.

Hence, we have

Tα−n+1(g
∆)(t) =

∫ t

0

∫ tn−2

0
· · ·

· · ·
∫ t2

0

∫ t1

0

∣∣∣Tα−n+1(f
∆n

)(s)
∣∣∣∆αs∆αt1 · · ·∆αtn−3∆αtn−2,

Tα−n+1(g
∆n−1

)(t) =

∫ t

0

∣∣∣Tα−n+1(f
∆n

)(s)
∣∣∣∆αs,

Tα−n+1(g
∆n

)(t) =
∣∣∣Tα−n+1(f

∆n
)(t)

∣∣∣.
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For 0 ≤ t ≤ h, we can see that

(7)

|f(t)| ≤
∫ t

0
|Tα−n+1(f

∆)(t1)|∆αt1

≤
∫ t

0

∫ t1

0
|Tα−n+1(f

∆2
)(t2)|∆αt2∆αt1

≤ · · · ≤ g(t).

Further, we find

g(t) =

∫ t

0
Tα−n+1(g

∆)(s)∆αs ≤
∫ t

0
Tα−n+1(g

∆)(t)∆αs

≤
∫ h

0
Tα−n+1(g

∆)(t)∆αs = Tα−n+1(g
∆)(t)

∫ h

0
(σ(s))α−n∆s

= Tα−n+1(g
∆)(t)

∫ h

0

( sα−n+1

α− n+ 1

)∆
∆s =

hα−n+1

α− n+ 1
Tα−n+1(g

∆)(t),

and taking into account the inequality (7), we get

|f(t)| ≤ g(t) ≤
( hα−n+1

α− n+ 1

)2
Tα−n+1(g

∆2
)(t)

≤ · · · ≤
( hα−n+1

α− n+ 1

)n−1
Tα−n+1(g

∆n−1
)(t).

The last inequality allows us to reach the following conclusion∫ h

0
|f(t)|m|Tα−n+1(f

∆n
)(t)|∆αt

≤
∫ h

0

(( hα−n+1

α− n+ 1

)n−1
Tα−n+1(g

∆n−1
)(t)

)m

Tα−n+1(g
∆n

)(t)∆αt

=
( hα−n+1

α− n+ 1

)m(n−1)
∫ h

0
[Tα−n+1(g

∆n−1
)(t)]mTα−n+1(g

∆n
)(t)∆αt.

For simplicity, let us denote y(t) = Tα−n+1(g
∆n−1

)(t). Now we have∫ h

0
|f(t)|m|Tα−n+1(f

∆n
)(t)|∆αt

≤
( hα−n+1

α− n+ 1

)m(n−1)
∫ h

0
(y(t))mTα−n+1(y

∆)(t)∆αt

=
( hα−n+1

α− n+ 1

)m(n−1)
∫ h

0
(y(t))my∆(t)∆t.

By virtue of the chain rule (3), and the fact that y∆(t) > 0, we conclude

(y(t))my∆(t) ≤ 1

m+ 1
(ym+1(t))∆,
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and obtain the inequality∫ h

0
|f(t)|m|Tα−n+1(f

∆n
)(t)|∆αt

≤ 1

m+ 1

( hα−n+1

α− n+ 1

)m(n−1)
∫ h

0
(ym+1(t))∆∆t.

However, the right-hand side integral becomes∫ h

0
(ym+1(t))∆∆t = (ym+1(h)) =

(
Tα−n+1(g

∆n−1
)(h)

)m+1

=
(∫ h

0
|Tα−n+1(f

∆n
)(t)|∆αt

)m+1
.

Applying Hölder’s inequality with indices m+1
m and m+1 to the last integral

on the right side, we get∫ h

0
(ym+1(t))∆∆t

≤
{(∫ h

0
∆αt

) m
m+1

(∫ h

0
|Tα−n+1(f

∆n
)(t)|m+1∆αt

) 1
m+1

}m+1

=
(∫ h

0
(σ(t))α−n∆t

)m
∫ h

0
|Tα−n+1(f

∆n
)(t)|m+1∆αt.

After calculating the first integral in the last row, we come to the inequality∫ h

0
(ym+1(t))∆∆t ≤

( hα−n+1

α− n+ 1

)m
∫ h

0
|Tα−n+1(f

∆n
)(t)|m+1∆αt.

Thus, we finally arrive at the inequality (6), i.e.∫ h

0
|f(t)|m

∣∣∣Tα−n+1(f
∆n

)(t)
∣∣∣∆αt

≤ 1

m+ 1

( hα−n+1

α− n+ 1

)mn
∫ h

0
|Tα−n+1(f

∆n
)(t)|m+1∆αt,

which is to be proved. □

Corollary 1. Suppose α ∈ (0, 1] and m ∈ N. For conformable ∆-fractional
differentiable function f : [0, h] ∩ T → R with f(0) = 0, we have∫ h

0
|f(t)|m

∣∣∣Tα(f
∆)(t)

∣∣∣∆αt ≤
1

m+ 1

(hα
α

)m
∫ h

0
|Tα(f

∆)(t)|m+1∆αt.

Proof. This is Theorem 10 with n = 1. □
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Example 3. In Theorem 10, suppose that α = n, n ∈ N, n > 1. Then, the
n times conformable ∆-fractional differentiable function f : [0, h] ∩ T → R
with

f(0) = Tα−n+1(f
∆)(0) = · · · = Tα−n+1(f

∆n−1
)(0) = 0

becomes an n times ∆-differentiable function f : [0, h] ∩ T → R with
f(0) = f∆(0) = · · · = f∆n−1

(0) = 0, and the inequality (6) from
Theorem 10 takes the form∫ h

0
|f(t)|m|f∆n

(t)|∆t ≤ hmn

m+ 1

∫ h

0
|f∆n

(t)|m+1∆t,

where m ∈ N.
Consequently, for α = n and T = R, the last inequality becomes one

generalization of the classical continuous Opial inequality involving the n-th
(n > 1) derivative of the given function f ,∫ h

0
|f(t)|m|f (n)(t)|dt ≤ hmn

m+ 1

∫ h

0
|f (n)(t)|m+1dt,

(see [2], Chapter 3). On the other hand, for α = n and T = Z, h ∈ Z,
h > 0, the inequality (6) from Theorem 10 becomes one generalization of
the classical discrete Opial inequality,

h−1∑
t=0

|f(t)|m|∆nf(t)| ≤ hmn

m+ 1

h−1∑
t=0

|∆nf(t)|m+1,

involving the forward difference operator of order n (n > 1),

∆nf(t) =

n∑
k=0

(−1)n−k

(
n
k

)
f(t+ k).

In particular, for α = n = m = 1 and ∆-differentiable function
f : [0, h] ∩ T → R with f(0) = 0, the inequality (6) from Theorem 10
becomes ∫ h

0
|f(t)f∆(t)|∆t ≤ h

2

∫ h

0
|f∆(t)|2∆t.

Thus, for α = n = m = 1 and T = R, the inequality (6) becomes the
classical continuous Opial inequality,∫ h

0
|f(t)f ′(t)|dt ≤ h

2

∫ h

0
|f ′(t)|)2dt.

On the other hand, if α = n = m = 1 and T = Z, then h ∈ Z, h > 0, and
the inequality (6) becomes the classical discrete Opial inequality,

h−1∑
t=0

|f(t)(f(t+ 1)− f(t))| ≤ h

2

h−1∑
t=0

|f(t+ 1)− f(t)|2.



30 Opial inequalities for a conformable ∆-fractional calculus. . .

4. Conclusions

The fractional calculus has numerous applications in many fields (engi-
neering, economics and finance, signal processing, dynamics of earthquakes,
geology, probability and statistics, chemical engineering, physics, thermo-
dynamics, neural networks, and so on). Therefore, it is one of the most
intensively developing areas of mathematical analysis nowadays.

Several definitions of fractional derivative have been proposed. A frac-
tional derivative which satisfies the well-known formula of the derivative of
the product (the quotient) of two functions and the chain rule, etc., is called
the conformable fractional derivative ([18]).

On the other hand, the theory of time scales was introduced in order to
unify continuous and discrete analysis. Consequently, a conformable frac-
tional calculus on an arbitrary time scale is a natural extension of the con-
formable fractional calculus.

Opial inequalities and many of their generalizations have various applica-
tions in the theory of differential and difference equations ([2]). From there,
the need to study the Opial inequalities on time scales naturally arose ([8],
[9]).

The discovered concept of time scales began to be applied to probability
theory as well, thus unifying discrete, continuous, and many other cases (for
example, see [6], [16]). Stochastic calculus on time scales and stochastic time
scales, meaning the time scale is generated by sampling a random variable,
are still in development (for example, see references within [6]).

In this paper, we proved some Opial-type inequalities using a conformable
∆-fractional calculus on time scales.

In stochastic analysis, it is well known that the time series analysis implies
knowledge of stochastic difference equations, while the continuous stochastic
processes involve the study of stochastic differential equations. Therefore,
the possibility of studying stochastic dynamic equations on time scales has
opened up ([10–12]). Consequently, the obtained Opial inequalities in this
paper can find their application in the consideration of stochastic dynamical
equations where conformal ∆-fractional calculus on time scales is included.
However, such an application points to further investigations of stochastic
dynamical equations using conformable ∆-fractional calculus on time scales.
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