NORMALIZATIONS OF FUZZY BCC-IDEALS IN BCC-ALGEBRAS

Wiesław A. Dudek and Young Bae Jun

Abstract. We introduce the notion of normal fuzzy BCC-ideals, maximal fuzzy BCC-ideals and completely normal fuzzy BCC-ideals in BCC-algebras. We investigate some properties of normal (resp. maximal, completely normal) BCC-ideals. We show that every non-constant normal fuzzy BCC-ideal which is a maximal element of $(\mathcal{N}(X), \subseteq)$ takes only the values 0 and 1, and every maximal fuzzy BCC-ideal is completely normal.

1. Introduction

In 1966, Y. Imai and K. Iséki (cf. [7]) defined a class of algebras of type (2,0) called BCK-algebras which generalize the notion of algebra of sets with the set subtraction as the only fundamental non-nullary operation, and on the other hand the notion of implication algebra (cf. [8]). The class of all BCKalgebras is a quasivariety. K. Isóki posed an interesting problem whether the class of BCK-algebras is a variety. That problem was solved by A. Wroński [11] who proved that BCK-algebras do not form a variety. In connection with this problem, Y. Komori (cf. [9]) introduced the notion of BCC-algebras, and W. A. Dudek (cf. [1], [2]) redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [5], W. A. Dudek and X. H. Zhang introduced a new notion of ideals in BCC-algebras and described connections between such ideals and congruences. W. A. Dudek and Y. B. Jun (cf. [3]) considered the fuzzification of BCC-ideals in BCC-algebras. They proved that every fuzzy BCC-ideal of a BCC-algebra is a fuzzy BCKideal, and showed that the converse is not true by providing a counterexample. They also proved that in a BCC-algebra every fuzzy BCK-ideal is a fuzzy BCC-subalgebra, and that in a BCK-algebra the notion of a fuzzy BCK-ideal and a fuzzy BCC-ideal coincide. The present authors (cf. [4]) described several

AMS (MOS) Subject Classification 1991. Primary: 06F35, 03G25, 94D05.

Key words and phrases: BCC-algebra, fuzzy BCC-ideal, normal fuzzy BCC-ideal, maximal fuzzy BCC-ideal, completely normal fuzzy BCC-ideal.

properties of fuzzy BCC-ideals in BCC-algebras, and discussed an extension of fuzzy BCC-ideals. In this paper we establish the normalization of fuzzy BCC-ideals in BCC-algebras. We introduce the notion of normal fuzzy BCC-ideals, maximal fuzzy BCC-ideals and completely normal fuzzy BCC-ideals in BCC-algebras. We investigate some interesting properties of normal (resp. maximal, completely normal) BCC-ideals. We show that every non-constant normal fuzzy BCC-ideal which is a maximal element of $(\mathcal{N}(X), \subseteq)$ takes only the values 0 and 1, and every maximal fuzzy BCC-ideal is completely normal.

2. Preliminaries

In the present paper a binary multiplication will be denoted by juxtaposition. Dots we use only to avoid repetitions of brackets. For example, the formula ((xy)(zy))(xz) = 0 will be written as $(xy \cdot zy) \cdot xz = 0$.

Definition 2.1. A non-empty set X with a constant 0 and a binary operation denoted by juxtaposition is called a BCC-algebra if for all $x, y, z \in X$ the following axioms hold:

- (i) $(xy \cdot zy) \cdot xz = 0$,
- (ii) xx = 0,
- (iii) 0x = 0,
- (iv) x0 = x,
- (v) xy = 0 and yx = 0 imply x = y.

Any BCK-algebra is a BCC-algebra, but there are BCC-algebras which are not BCK-algebras (cf. [2]). Note that a BCC-algebra is a BCK-algebra if and only if it satisfies:

$$(1) xy \cdot z = xz \cdot y.$$

On any BCC-algebra (similarly as in the case of BCK-algebras) one can define the natural order \leq by putting

$$(2) x \le y \Longleftrightarrow xy = 0.$$

It is not difficult to verify that this order is partial and 0 is its smallest element. Moreover, in any BCC-algebra X, the following are true:

$$(3) xy \le x,$$

$$(4) xy \cdot zy \le xz,$$

(5)
$$x \le y \text{ implies } xz \le yz \text{ and } zy \le zx.$$

Now we review some fuzzy logic concepts. A fuzzy set in a set X is a function $\mu: X \to [0,1]$. By X_{μ} we denote the set $\{x \in X : \mu(x) = \mu(0)\}$. For any fuzzy sets μ and ν in a set X, we define

$$\mu \subseteq \nu \Leftrightarrow \mu(x) \leq \nu(x)$$
 for all $x \in X$.

In the sequel, unless otherwise specified, X will denote a BCC-algebra.

Definition 2.2. A non-empty subset A of X is called a BCC-ideal of X if

- (i) $0 \in A$,
- (ii) $xy \cdot z \in A$ and $y \in A$ imply $xz \in A$, $\forall x, y, z \in X$.

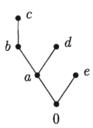
3. Normalization of fuzzy BCC-ideals

Definition 3.1. [3] A fuzzy set μ in X is called a fuzzy BCC-ideal of X if

- (i) $\mu(0) \ge \mu(x), \forall x \in X$,
- (ii) $\mu(xz) \ge \min\{\mu(xy \cdot z), \mu(y)\}, \forall x, y, z \in X.$

Example 3.2. [3] Let $X = \{0, a, b, c, d, e\}$ be a set with Cayley table and Hasse diagram as follows:

$oldsymbol{\cdot} oldsymbol{0} oldsymbol{a} oldsymbol{b} oldsymbol{c} oldsymbol{d} oldsymbol{e}$	
	,
0 0 0 0 0 0 0)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	L
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ı
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	ı
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ı
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$)



Then X is a BCC-algebra ([3]). Define a fuzzy set μ in X by $\mu(e) = 0.3$ and $\mu(x) = 0.5$ for all $x \neq e$. Then μ is a fuzzy BCC-ideal of X.

Lemma 3.3. [4] Every fuzzy BCC-ideal μ of X is order reversing. The following proposition is straightforward and omit the proof.

Proposition 3.4. Let A be a non-empty subset of X and let μ_A be a fuzzy set in X defined by

$$\mu_A(x) := \left\{ \begin{array}{ll} s & \text{if } x \in A, \\ t & \text{otherwise,} \end{array} \right.$$

for all $x \in X$ and all $s, t \in [0,1]$ with s > t. Then μ_A is a fuzzy BCC-ideal of X if and only if A is a BCC-ideal of X. Moreover,

$$X_{\mu_A} := \{x \in X : \mu_A(x) = \mu_A(0)\} = A.$$

Definition 3.5. A fuzzy BCC-ideal μ of X is said to be *normal* if there exists $x \in X$ such that $\mu(x) = 1$.

Example 3.6. Let X be a BCC-algebra in Example 3.2. Then a fuzzy set μ in X defined by $\mu(e) = t < 1$ and $\mu(x) = 1$ for all $x \neq e$ is a normal fuzzy BCC-ideal of X.

We note that if μ is a normal fuzzy BCC-ideal of X, then clearly $\mu(0) = 1$, and hence μ is normal if and only if $\mu(0) = 1$.

Proposition 3.7. Given a fuzzy BCC-ideal μ of X let μ^+ be a fuzzy set in X defined by $\mu^+(x) = \mu(x) + 1 - \mu(0)$ for all $x \in X$. Then μ^+ is a normal fuzzy BCC-ideal of X which contains μ .

Proof. We have $\mu^{+}(0) = \mu(0) + 1 - \mu(0) = 1 \ge \mu^{+}(x)$ for all $x \in X$. Let $x, y, z \in X$. Then

$$\min\{\mu^{+}(xy \cdot z), \mu^{+}(y)\} = \min\{\mu(xy \cdot z) + 1 - \mu(0), \mu(y) + 1 - \mu(0)\}$$
$$= \min\{\mu(xy \cdot z), \mu(y)\} + 1 - \mu(0)$$
$$\leq \mu(xz) + 1 - \mu(0)$$
$$= \mu^{+}(xz).$$

This shows that μ^+ is a fuzzy BCC-ideal of X. Clearly $\mu \subseteq \mu^+$, completing the proof.

Corollary 3.8. Let μ and μ^+ be as in Proposition 3.7. If there is $x \in X$ such that $\mu^+(x) = 0$, then $\mu(x) = 0$.

Proof. Since $\mu \subseteq \mu^+$, it is straightforward.

Using Proposition 3.4, we know that for any BCC-ideal A of X the characteristic function χ_A of A is a normal fuzzy BCC-ideal of X. It is clear that μ is normal iff $\mu^+ = \mu$.

Proposition 3.9. If μ is a fuzzy BCC-ideal of X, then $(\mu^+)^+ = \mu^+$. Moreover if μ is normal, then $(\mu^+)^+ = \mu$.

Proof. Straightforward.

Proposition 3.10. If μ and ν are fuzzy BCC-ideals of X such that $\mu \subseteq \nu$ and $\mu(0) = \nu(0)$, then $X_{\mu} \subseteq X_{\nu}$.

Proof. Let $x \in X_{\mu}$. Then $\nu(x) \ge \mu(x) = \mu(0) = \nu(0)$ and so $\nu(x) = \nu(0)$, i.e., $x \in X_{\nu}$, proving $X_{\mu} \subseteq X_{\nu}$.

Corollary 3.11. If μ and ν are normal fuzzy BCC-ideals of X such that $\mu \subseteq \nu$, then $X_{\mu} \subseteq X_{\nu}$.

Proposition 3.12. Let μ be a fuzzy BCC-ideal of X. If there exists a fuzzy BCC-ideal ν of X such that $\nu^+ \subseteq \mu$, then μ is normal.

Proof. Assume that there exists a fuzzy BCC-ideal ν of X such that $\nu^+ \subseteq \mu$. Then $1 = \nu^+(0) \le \mu(0)$, and so $\mu(0) = 1$ and we are done.

Proposition 3.13. Let μ be a fuzzy BCC-ideal of X and let $f:[0,\mu(0)] \rightarrow [0,1]$ be an increasing function. Then a fuzzy set $\mu_f: X \rightarrow [0,1]$ defined by $\mu_f(x) := f(\mu(x))$ for all $x \in X$ is a fuzzy BCC-ideal of X. In particular, if $f(\mu(0)) = 1$ then μ_f is normal; and if $f(t) \geq t$ for all $t \in [0,\mu(0)]$, then μ is contained in μ_f .

Proof. Note that $\mu(x) \leq \mu(0)$ for all $x \in X$. Since f is increasing, it follows that

$$\mu_f(0) = f(\mu(0)) \ge f(\mu(x)) = \mu_f(x)$$

for all $x \in X$. For any $x, y, z \in X$, we have

$$\min\{\mu_f(xy \cdot z), \mu_f(y)\} = \min\{f(\mu(xy \cdot z)), f(\mu(y))\}$$

$$= f(\min\{\mu(xy \cdot z), \mu(y)\})$$

$$\leq f(\mu(xz)) = \mu_f(xz).$$

Hence μ_f is a fuzzy BCC-ideal of X. If $f(\mu(0)) = 1$, then clearly μ_f is normal. Assume that $f(t) \geq t$ for all $t \in [0, \mu(0)]$. Then $\mu_f(x) = f(\mu(x)) \geq \mu(x)$ for all $x \in X$, which proves that μ is contained in μ_f .

Denote by $\mathcal{N}(X)$ the set of all normal fuzzy BCC-ideals of X. Note that $\mathcal{N}(X)$ is a poset under the set inclusion.

Theorem 3.14. Let $\mu \in \mathcal{N}(X)$ be a non-constant such that it is a maximal element of $(\mathcal{N}(X), \subseteq)$. Then μ takes only the values 0 and 1.

Proof. Note that $\mu(0) = 1$ since μ is normal. Let $x \in X$ be such that $\mu(x) \neq 1$. We claim that $\mu(x) = 0$. If not, then there exists $a \in X$ such that $0 < \mu(a) < 1$. Let ν be a fuzzy set in X defined by $\nu(x) := \frac{1}{2}(\mu(x) + \mu(a))$ for all $x \in X$. Then clearly ν is well-defined, and we have that for all $x \in X$,

$$\nu(0) = \frac{1}{2}(\mu(0) + \mu(a)) = \frac{1}{2}(1 + \mu(a)) \ge \frac{1}{2}(\mu(x) + \mu(a)) = \nu(x).$$

For any $x, y, z \in X$ we obtain

$$\begin{split} \nu(xz) &= \frac{1}{2}(\mu(xz) + \mu(a)) \\ &\geq \frac{1}{2}(\min\{\mu(xy \cdot z), \mu(y)\} + \mu(a)) \\ &= \min\{\frac{1}{2}(\mu(xy \cdot z) + \mu(a)), \frac{1}{2}(\mu(y) + \mu(a))\} \\ &= \min\{\nu(xy \cdot z), \nu(y)\}. \end{split}$$

Hence ν is a fuzzy BCC-ideal of X. It follows from Proposition 3.7 that $\nu^+ \in \mathcal{N}(X)$ where ν^+ is defined by $\nu^+(x) = \nu(x) + 1 - \nu(0)$ for all $x \in X$.

Clearly $\nu^+(x) \geq \mu(x)$ for all $x \in X$. Note that

$$\begin{split} \nu^+(a) &= \nu(a) + 1 - \nu(0) \\ &= \frac{1}{2}(\mu(a) + \mu(a)) + 1 - \frac{1}{2}(\mu(0) + \mu(a)) \\ &= \frac{1}{2}(\mu(a) + 1) > \mu(a) \end{split}$$

and $\nu^+(a) < 1 = \nu^+(0)$. Hence ν^+ is non-constant, and μ is not a maximal element of $\mathcal{N}(X)$. This is a contradiction.

We construct a new fuzzy BCC-ideal from old. Let t>0 be a real number. If $\alpha \in [0,1]$, α^t shall mean the positive root in case t<1. We define $\mu^t: L \to [0,1]$ by $\mu^t(x) := (\mu(x))^t$ for all $x \in X$.

Proposition 3.15. If μ is a fuzzy BCC-ideal of X, then so is μ^t and $X_{\mu^t} = X_{\mu}$.

Proof. For any $x, y, z \in X$, we have $\mu^t(0) = (\mu(0))^t \ge (\mu(x))^t = \mu^t(x)$ and

$$\begin{array}{ll} \mu^t(xz) &= (\mu(xz))^t \\ &\geq (\min\{\mu(xy\cdot z), \mu(y)\})^t \\ &= \min\{(\mu(xy\cdot z))^t, (\mu(y))^t\} \\ &= \min\{\mu^t(xy\cdot z), \mu^t(y)\}. \end{array}$$

Hence μ^t is a fuzzy BCC-ideal of X. Now

$$\begin{array}{ll} X_{\mu^t} &= \{x \in L : \mu^t(x) = \mu^t(0)\} \\ &= \{x \in X : (\mu(x))^t = (\mu(0))^t\} \\ &= \{x \in X : \mu(x) = \mu(0)\} \\ &= X_{\mu}. \end{array}$$

This completes the proof.

Corollary 3.16. If $\mu \in \mathcal{N}(X)$, then so is μ^t .

Proof. Straightforward.

Definition 3.17. Let μ be a fuzzy BCC-ideal of X. Then μ is said to be maximal if

- (i) μ is non-constant.
- (ii) μ^+ is a maximal element of the poset $(\mathcal{N}(X),\subseteq)$.

Theorem 3.18. If μ is a maximal fuzzy BCC-ideal of X, then

- (i) μ is normal.
- (ii) μ takes only the values 0 and 1.
- (iii) $\mu_{X_{\mu}} = \mu$.
- (iv) X_{μ} is a maximal BCC-ideal of X.

Proof. Let μ be a maximal fuzzy BCC-ideal of X. Then μ^+ is a nonconstant maximal element of the poset $(\mathcal{N}(X),\subseteq)$. It follows from Theorem 3.14 that μ^+ takes only the values 0 and 1. Note that $\mu^+(x)=1$ if and only if $\mu(x)=\mu(0)$, and $\mu^+(x)=0$ if and only if $\mu(x)=\mu(0)-1$. By Corollary 3.8, we have $\mu(x)=0$, that is, $\mu(0)=1$. Hence μ is normal, and clearly $\mu^+=\mu$. This proves (i) and (ii).

- (iii) Clearly $\mu_{X_{\mu}} \subseteq \mu$ and $\mu_{X_{\mu}}$ takes only the values 0 and 1. Let $x \in X$. If $\mu(x) = 0$, then obviously $\mu \subseteq \mu_{X_{\mu}}$. If $\mu(x) = 1$, then $x \in X_{\mu}$, and so $\mu_{X_{\mu}}(x) = 1$. This shows that $\mu \subseteq \mu_{X_{\mu}}$.
- (iv) X_{μ} is a proper BCC-ideal of X because μ is non-constant. Let A be a BCC-ideal of X such that $X_{\mu} \subseteq A$. Noticing that, for any BCC-ideals A and B of X, $A \subseteq B$ if and only if $\mu_A \subseteq \mu_B$, then we obtain $\mu = \mu_{X_{\mu}} \subseteq \mu_A$. Since μ and μ_A are normal and since $\mu = \mu^+$ is a maximal element of $\mathcal{N}(X)$, we have that either $\mu = \mu_A$ or $\mu_A = 1$ where $1: X \to [0,1]$ is a fuzzy set defined by $\mathbf{1}(x) := 1$ for all $x \in X$. The later case implies that A = X. If $\mu = \mu_A$, then $X_{\mu} = X_{\mu_A} = A$ by Proposition 3.4. This proves that X_{μ} is a maximal BCC-ideal of X, ending the proof.

Definition 3.19. A normal fuzzy BCC-ideal μ of X is said to be *completely normal* if there exists $x \in X$ such that $\mu(x) = 0$. Denote by $\mathcal{C}(X)$ the set of all completely normal fuzzy BCC-ideals of X.

We note that $\mathcal{C}(X) \subseteq \mathcal{N}(X)$ and the restriction of the partial ordering \subseteq of $\mathcal{N}(X)$ gives a partial ordering of $\mathcal{C}(X)$.

Proposition 3.20. Any non-constant maximal element of $(\mathcal{N}(X), \subseteq)$ is also a maximal element of $(\mathcal{C}(X), \subseteq)$.

Proof. Let μ be a non-constant maximal element of $(\mathcal{N}(X), \subseteq)$. By Theorem 3.14, μ takes only the values 0 and 1, and so $\mu(0) = 1$ and $\mu(x) = 0$ for some $x \in X$. Hence $\mu \in \mathcal{C}(X)$. Assume that there exists $\nu \in \mathcal{C}(X)$ such that $\mu \subseteq \nu$. It follows that $\mu \subseteq \nu$ in $\mathcal{N}(X)$. Since μ is maximal in $(\mathcal{N}(X), \subseteq)$ and since ν is non-constant, therefore $\mu = \nu$. Thus μ is maximal element of $(\mathcal{C}(X), \subseteq)$, ending the proof.

Theorem 3.21. Every maximal fuzzy BCC-ideal of X is completely normal.

Proof. Let μ be a maximal fuzzy BCC-ideal of X. Then by Theorem 3.18, μ is normal and $\mu = \mu^+$ takes only the values 0 and 1. Since μ is nonconstant, it follows that $\mu(0) = 1$ and $\mu(x) = 0$ for some $x \in X$. Hence μ is completely normal, ending the proof.

4. References

- W. A. Dudek: The number of subalgebras of finite BCC-algebras, Bull. Inst. Math. Academia Sinica, 20 (1992), 129-136.
- [2] W. A. Dudek: On proper BCC-algebras, Bull. Inst. Math. Academia Sinica, 20 (1992), 137-150.
- [3] W. A. Dudek and Y. B. Jun: Fuzzy BCC-ideals in BCC-algebras, Math. Montisnigri, 10 (1999) (in print).
- [4] W. A. Dudek: Y. B. Jun and Z. Stojaković: On fuzzy BCC-algebras, (to appear)
- [5] W. A. Dudek and X. H. Zhang: On ideals and congruences in BCC-algebras, Czechoslovak Math. J., 48(123) (1998), 21-29.
- [6] D. H. Foster: Fuzzy topological groups, J. Math. Anal. Appl., 67 (1979), 549-564.
- [7] Y. Imai and K. Iséki: On axiom system of propositional calculi XIV, Proc. Japan Academy, 42 (1966), 19-22.
- [8] K. Iséki and S. Tanaka: An introduction to the theory of BCK-algebras, Math. Japon., 23 (1978), 1-26.
- [9] Y. Komori: The class of BCC-algebras is not a variety, Math. Japon., 29 (1984), 391-394.
- [10] J. Meng and Y. B. Jun: BCK-algebras: Kyungmoonsa, Seoul, Korea 1994.
- [11] A. Wroński: BCK-algebras do not form a variety, Math. Japon., 28 (1983), 211-213.
- [12] L. A. Zadeh: Fuzzy sets, Inform. Control, 8 (1965), 338-353.

W. A. Dudek Institute of Mathematics Technical University of Wrocław Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland e-mail: dudek@im.pwr.wroc.pl

Y. B. Jun
Department of Mathematics Education
Gyeongsang National University
Chinju 660-701, Korea
e-mail: ybjun@nongae.gsnu.ac.kr

Received January 10, 1999.