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CHARACTERIZATION OF GENERAL CONVEX
FUNCTIONS AND ITS APPLICATIONS

Milan R. Taskovié

Abstract. In this paper we continue the study of the general convex
functions, which are introduced in our former paper (Taskovié, Math.
Japonica, 37 (1992), 367-372). This paper present a new characterization
of general convex functions in term of general level sets. Applications in
convex analysis are considered.

1. Introduction and main result

In our former paper, Taskovié [5], have introduced the notion of general
convex functions. A function f : D — R, where R denotes the real line and D

is a convex subset of R", is said to be general convex if there is a function
g: f(D)? — R such that

(Max) FOz + (1= ) < max { £(2), [@), 9(F(@), 1)}

for all z,y € D and for arbitrary A € [0,1]. We notice that the set of all
convex and quasiconvex function can be a proper subset of the set all general
convex functions.

In order, the function g : R? — R is increasing if z;,7; € R and
z; < y; (i = 1,2) implies g(z1, 22) < g(y1,¥y2). On the other hand, the function
g : R? = R is level increasing if it is increasing and with the property

g (max {z,g(z,z)} ,max {z, g9(z,2)}) < max {z,g(z,z)}
for every z € R.

It is well-known that a convex function can be characterized by con-
vexity of its epigraph. Also, we know that a quasiconvex function can be
characterized by convexity of its level sets.

In this paper we present a new characterization of general convex func-
tions as convexity of their general level sets. In this sense, we are now in a
position to formulate main general statement.
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Theorem 1. Let D C R™ be a conver and open set. The function
f : D — R is general convez for some level increasing function g : R2 — R if
and only if

(G1)  g(Da) = {z € D|max {f(2),9(/(c), f(x))} < max{a,g(a,a)} }
15 a convex set for each number a € R.

Proof. Suppose that f is a general convex function, and let z,y €
€ g(D,). Therefore z,y € D and

(1) max {f(z),9(f(z), f(z))}, max {f(y),9(f (), f())} <max{a,g9(a,a)}.
Let z = Az +(1—A)y for A € [0, 1]. By convexity of D we obtain z € D.
Furhemore, by general convexity of f, i.e., from (Max) and (1) we have

£(2) < max { f(2), (), 9(£(2), F¥)) )} <
< max {f(z),f(y),max (9(f(@), f(2)),9(f(), F(®))) } < max {4, g(a,a)} .

Thus f(z) < max{a, g(a,a)} and from level increasing of g : R? — R we
obtain ¢(f(), £(a)) < g( max {a, 9(a, )}, max {a, g(a, a)}) < max {a, g(a, 0)}.
This mean that is max {f(2),g(f(2), f(2))} < max{a,g(a,a)}, ie., z €
€ g(D,). Thus g(D,) is a convex set. ‘

Conversely, suppose that g(D,) is a convex set for each number a € R.
Let z = Az + (1 — A)y for all X € [0,1]. Notice that z,y € g(D,) for

max {a, 9(a, )} = max {f(z), f(y), 9(f(2), f(¥)) } -
By assumption, g(D,) is convex, so that z € g(D,). Therefore,

7() < max { £(2),9(£(2), 1)) } < max {a,9(a,0)} =
= max { f(2), (), 4(f (@), F0)) }.

Hence, f is a general convex function. The proof is complete.
We notice, from the preceding proof of Theorem 1 as an immediate fact
we obtain the following statement.

Corollary 1. Let D C R™ be a convez and open set, and let f : D — R.
If there is a function g : R? — R such that the sets g(Dy) are convez, then f
15 a general convezr function.

On the other hand, from the preceding statement, we are now in a
position to formulate the following consequence for quasiconvex functions.

In this sense, a function f : D — R, where D is a convex subset of R,
is said to be quasiconvex if

fz + (1= A)y) < max {f(z), f(y)}
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for all z,y € D and for arbitrary A € [0,1]. We notice that the set of all
quasiconvex functions can be a proper subset of the set all general convex
functions.

Corollary 2. (De Finetti [1], Fenchel [2]). Let D C R" be a convez and
open set. The function f: D — R is quasiconvez if and only if

Ly:={zeD| f(z)<a}
is a convez set for each number a € R. (The set L, is called level set.)

Proof. If to teasing on the quasiconvex class functions taking that
9(f(z), f(y)) = max{f(z), f(y)} from Theorem 1 we obtain directly this
statement for quasiconvex functions and level sets. The proof is complete.

Further, as an immediate consequence of Theorem 1 we obtain directly
the following statement with which we precision Lemma 1 of [5].

Corollary 3. (Extremal Principle). Let X be a reflezive Banach space
and let M be a nonempty, closed, bounded and convez set in X. If f : M —
— RU{+o0} is a general convex function for some continuous level increasing
function g : R? = R and if the set g(D,) is closed for all a € R, then f has a
minimum on M.

Proof. The set M is weakly compact, because M is bounded, closed
and convex set in reflexive Banach space X. Further, g(D,) is closed and
convex (from Theorem 1), and hence weakly closed. Therefore f is lower
semicontinuous in the weak topology on M. The conclusion now follows from
Weierstrass theorem. The proof is complete.

2. Further applications

We now give a result which shows that the maximum of a general convex
function over a compact polyhedral set occurs at an extreme point.

A nonempty set D C R” is called a polyhedral set if it is the inter-
section of a finite number of closed half spaces. Note that a polyhedral set
is a closed convex set. A vector z € D is called an extreme point of D if
z=Az+ (1 - Ay with A € (0,1) and z,y € D implies that z =z = y.

Theorem 2. Let D C R" be a nonempty compact polyhedral set, and
let f: D — R be a continuous and general convexr function for some level
increasing function g : R = R. Consider the problem to mazimize & — f(z)
subject to z € D. Then there exists an optimal solution £ € D to the problem
which is an extreme point of D.
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Proof. Note that f is continuous on D and hence attains a maximum,
say, at £ € D. If there is an extreme point whose objective is equal to f{£),
then the result is at hand. Otherwise, let z1,... ,z; be the extreme points of
D, and assume that f(¢) > f(z;) for j = 1,... , k. By representation of points
in D, & € D can berepresented as & = A\jz1+- - -+ A2k, where Aj+-- -+ =1
for \; >0(j =1,...,k). Since f(£) > f(z;) for each j =1,... ,k we obtain

(2) f() > 'Erllaxkf(xj) = max{a, g(a,a)}.
i=1,..

Now consider the sets g(D,) with (G1) for some level increasing function
g : R? - R. Note that z; € g(D,) for j = 1,... ,k and by general convexity of
f (Theorem 1) the set g(D,) is convex. Hence, £ = A\jz1 + - - - + A\xz belongs
to g(D,), i.e.,

)

max { f(£),9(f(€), f(§))} < max{a,g(a,a)}.

This implies that f(¢) < max{a,g(a,a)} which contradicts (2). This
contradiction shows that f(¢) = f(z;) for some extreme point z;. The proof
is complete.

We notice that quasiconvex functions are, de facto, general convex func-
tions. Thus we obtain directly as an immediate consequence of Theorem 2 and
corresponding result for quasiconvex functions. This mean that the maximum
of a quasiconvex function over a compact polyhedral set occurs at an extreme
point.

3. General level sets

In what follows we assume that D is a nonempty convex subset of R”
and ¢ is a positive constant. Recall that a function f : D — R is said to be
e-quasiconvex if

FQz+ 1= A)y) <max{f(z), fy)} +¢
for all z,y € D, and all A € [0,1]. For ¢ = 0 this definition reduces to that of
quasiconvex function, cf. Roberts-Varberg [4].
Recall that a function f : D — R is said to be e-general convex if for
some € > 0 there is a function g : f(D)? = R such that

M) fO+ (1= A) < max{£(@), @), 9 (@), F) | +e

for all z,y € D and for all A € [0,1]. For € = 0 this definition reduces to that
of general convex function.

On the other hand, the function g : R? — R is e-level increasing if it
is increasing and with the property

g (max {z,9(z,z)} + ¢, max {z, g(z,z)} + ¢) < max {z,9(z,z)} + ¢
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for every z € R and € > 0.
Assume that f: D — R is a e-general convex function for some e-level
increasing function g : R? — R and consider the general level sets

9(La) = { € D|max {f(2),9(f(2), f(2))} < o}

for a € R. It is clear that Uzerg(Lg) = D and g(L,) C g(Ly) whenever a < b.
We notice, the set g(L,) is called general level set.

We are now in a position to formulate the following statement with
which we precision and expand a fact (a comment) in [5].

Theorem 3. Let D C R” be o nonempty convez set, and let f : D — R
be a e-general conves function for some e-level increasing function g : R? —
=R Ifz1,... ,2m+1 € g(Ly) form € N, a € R and Ay + -+ + dpy1 = 1,
(Ayee s Ama1 €[0,1]), then '

Mz + -+ Ams1Zma1 € 9 (Dimnax{ag(aa)}+ek(m)) »
where k(m) = 1 + [log, m|.

Proof. If z,y € g(Ly) and X\ + Xy = (/\1,)\2 € [0,1]) we have

1
max{f(z), g(f(a:),f(x))} < a, and max{f(y ,g(f , f(y) )} < a. From in-
equality (M) for z = Az + A2y we obtain

f(z) < max {f(z), f(y),9(f(2), f(y)) } + € < max{a, g(a,a)} +e.
By e-level increasing of g : R? — R we obtain

9(f(2),f(2)) <
< g( max{a, g(a,a)} + ¢, max{a, g(a,a)} + 6) < max{a,g(a,a)} +e¢.

@

This means that max{f(z),9(f(2), f(2))} < max{a,g(a,a)} + ¢, ie.,
z =XM1z + A2y € 9 (Lmax{a,g(aa)}+¢)- By induction we can show that

(3) ATy 4+ Agrzar € g (Lmax{a,g(a,a)}+6r)
forallr € N, for z1,... ,zpr € Dand A1,... , Agr € [0,1] with Ay 4+ -+ Xor =
= 1. Fix an m € N and assume that z1,... ,z, € D with A\,... ;A\, € [0,1]

and A\; + -+ + Ay, = 1. Take the minimal 7 € N such that m + 1 < 27. One
can easily check that r = [logy m] + 1 := k(m). In the case m + 1 < 2", let us
put Ay = -+ = Agr = 0 and zyp49 = -+ = z9r := z1. Then by preceding
facts and (3), we obtain

)\1.’1,‘1 R )‘m-{—lxm—i-l =
=MT1+ -+ Arzor €9 (Lmax{a,g(a,a)}+sk(m)) .
The proof is complete.

From Theorem 3 we are now in a position to formulate the following
directly consequence for quasiconvex functions.
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Corollary 4. (Nikodem [3]). Let D C R™ be a nonempty convez set,
and let f : D = R be a e-quasiconver function. If x1,... ,xms1 € L, for
meN, a€Rand \; + -+ Apns1 =1 (A1,... , Amt1 € [0,1]), then

ATy + -+ Ams1Tmat € Lagek(m)
for k(m) := 1+ [log, m].

Proof. If to teasing on the e-quasiconvex class functions taking that
g(f(z), f(y)) = max{f(z), f(y)} from Theorem 3 we obtain directly this
statement, because in this case g(L,) = L,. The proof is complete.
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