CHARACTERIZATION OF GENERAL CONVEX FUNCTIONS AND ITS APPLICATIONS

Milan R. Tasković

Abstract. In this paper we continue the study of the general convex functions, which are introduced in our former paper (Tasković, Math. Japonica, 37 (1992), 367-372). This paper present a new characterization of general convex functions in term of general level sets. Applications in convex analysis are considered.

1. Introduction and main result

In our former paper, Tasković [5], have introduced the notion of general convex functions. A function $f:D\to\mathbb{R}$, where \mathbb{R} denotes the real line and D is a convex subset of \mathbb{R}^n , is said to be **general convex** if there is a function $g:f(D)^2\to\mathbb{R}$ such that

(Max)
$$f(\lambda x + (1 - \lambda)y) \le \max \left\{ f(x), f(y), g(f(x), f(y)) \right\}$$

for all $x, y \in D$ and for arbitrary $\lambda \in [0, 1]$. We notice that the set of all convex and quasiconvex function can be a proper subset of the set all general convex functions.

In order, the function $g: \mathbb{R}^2 \to \mathbb{R}$ is increasing if $x_i, y_i \in \mathbb{R}$ and $x_i \leq y_i$ (i=1,2) implies $g(x_1,x_2) \leq g(y_1,y_2)$. On the other hand, the function $g: \mathbb{R}^2 \to \mathbb{R}$ is level increasing if it is increasing and with the property

$$g\left(\max\left\{x,g(x,x)\right\},\max\left\{x,g(x,x)\right\}\right)\leq \max\left\{x,g(x,x)\right\}$$
 for every $x\in\mathbb{R}.$

It is well-known that a convex function can be characterized by convexity of its epigraph. Also, we know that a quasiconvex function can be characterized by convexity of its level sets.

In this paper we present a new characterization of general convex functions as convexity of their general level sets. In this sense, we are now in a position to formulate main general statement.

AMS (MOS) Subject Classification 1991. Primary: 49A40, 90C30. Secondary: 49A35, 90C48.

Key words and phrases: Convex functions, Quasi-convex functions, General convex functions, Extremal problems, Level sets, General level sets, Characterization of general convexity.

Theorem 1. Let $D \subset \mathbb{R}^n$ be a convex and open set. The function $f: D \to \mathbb{R}$ is general convex for some level increasing function $g: \mathbb{R}^2 \to \mathbb{R}$ if and only if

(G1)
$$g(D_a) := \left\{ x \in D \mid \max \left\{ f(x), g(f(x), f(x)) \right\} \le \max \left\{ a, g(a, a) \right\} \right\}$$
 is a convex set for each number $a \in \mathbb{R}$.

Proof. Suppose that f is a general convex function, and let $x,y \in g(D_a)$. Therefore $x,y \in D$ and

(1)
$$\max \{f(x), g(f(x), f(x))\}, \max \{f(y), g(f(y), f(y))\} \le \max \{a, g(a, a)\}.$$

Let $z = \lambda x + (1 - \lambda)y$ for $\lambda \in [0, 1]$. By convexity of D we obtain $z \in D$. Furhemore, by general convexity of f, i.e., from (Max) and (1) we have

$$\begin{split} f(z) &\leq \max \left\{ f(x), f(y), g\big(f(x), f(y)\big) \right\} \leq \\ &\leq \max \left\{ f(x), f(y), \max \big(g\big(f(x), f(x)\big), g\big(f(y), f(y)\big) \big) \right\} \leq \max \left\{ a, g(a, a) \right\}. \end{split}$$

Thus $f(z) \leq \max\{a, g(a, a)\}$ and from level increasing of $g: \mathbb{R}^2 \to \mathbb{R}$ we obtain $g(f(z), f(a)) \leq g (\max\{a, g(a, a)\}, \max\{a, g(a, a)\}) \leq \max\{a, g(a, a)\}$. This mean that is $\max\{f(z), g(f(z), f(z))\} \leq \max\{a, g(a, a)\}$, i.e., $z \in g(D_a)$. Thus $g(D_a)$ is a convex set.

Conversely, suppose that $g(D_a)$ is a convex set for each number $a \in \mathbb{R}$. Let $z = \lambda x + (1 - \lambda)y$ for all $\lambda \in [0, 1]$. Notice that $x, y \in g(D_a)$ for

$$\max \left\{ a, g(a, a) \right\} = \max \left\{ f(x), f(y), g\left(f(x), f(y)\right) \right\}.$$

By assumption, $g(D_a)$ is convex, so that $z \in g(D_a)$. Therefore,

$$\begin{split} f(z) & \leq \max \Big\{ f(z), g\big(f(z), f(z)\big) \Big\} \leq \max \Big\{ a, g(a, a) \Big\} = \\ & = \max \Big\{ f(x), f(y), g\big(f(x), f(y)\big) \Big\}. \end{split}$$

Hence, f is a general convex function. The proof is complete.

We notice, from the preceding proof of Theorem 1 as an immediate fact we obtain the following statement.

Corollary 1. Let $D \subset \mathbb{R}^n$ be a convex and open set, and let $f: D \to \mathbb{R}$. If there is a function $g: \mathbb{R}^2 \to \mathbb{R}$ such that the sets $g(D_a)$ are convex, then f is a general convex function.

On the other hand, from the preceding statement, we are now in a position to formulate the following consequence for quasiconvex functions.

In this sense, a function $f: D \to \mathbb{R}$, where D is a convex subset of \mathbb{R}^n , is said to be **quasiconvex** if

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}\$$

for all $x, y \in D$ and for arbitrary $\lambda \in [0, 1]$. We notice that the set of all quasiconvex functions can be a proper subset of the set all general convex functions.

Corollary 2. (De Finetti [1], Fenchel [2]). Let $D \subset \mathbb{R}^n$ be a convex and open set. The function $f: D \to \mathbb{R}$ is quasiconvex if and only if

$$L_a := \left\{ x \in D \middle| \quad f(x) \le a \right\}$$

is a convex set for each number $a \in \mathbb{R}$. (The set L_a is called level set.)

Proof. If to teasing on the quasiconvex class functions taking that $g(f(x), f(y)) = \max\{f(x), f(y)\}$ from Theorem 1 we obtain directly this statement for quasiconvex functions and level sets. The proof is complete.

Further, as an immediate consequence of Theorem 1 we obtain directly the following statement with which we precision Lemma 1 of [5].

Corollary 3. (Extremal Principle). Let X be a reflexive Banach space and let M be a nonempty, closed, bounded and convex set in X. If $f: M \to \mathbb{R} \cup \{+\infty\}$ is a general convex function for some continuous level increasing function $g: \mathbb{R}^2 \to \mathbb{R}$ and if the set $g(D_a)$ is closed for all $a \in \mathbb{R}$, then f has a minimum on M.

Proof. The set M is weakly compact, because M is bounded, closed and convex set in reflexive Banach space X. Further, $g(D_a)$ is closed and convex (from Theorem 1), and hence weakly closed. Therefore f is lower semicontinuous in the weak topology on M. The conclusion now follows from Weierstrass theorem. The proof is complete.

2. Further applications

We now give a result which shows that the maximum of a general convex function over a compact polyhedral set occurs at an extreme point.

A nonempty set $D \subset \mathbb{R}^n$ is called a **polyhedral set** if it is the intersection of a finite number of closed half spaces. Note that a polyhedral set is a closed convex set. A vector $z \in D$ is called an **extreme point** of D if $z = \lambda x + (1 - \lambda)y$ with $\lambda \in (0, 1)$ and $x, y \in D$ implies that z = x = y.

Theorem 2. Let $D \subset \mathbb{R}^n$ be a nonempty compact polyhedral set, and let $f: D \to \mathbb{R}$ be a continuous and general convex function for some level increasing function $g: \mathbb{R}^2 \to \mathbb{R}$. Consider the problem to maximize $x \mapsto f(x)$ subject to $x \in D$. Then there exists an optimal solution $\xi \in D$ to the problem which is an extreme point of D.

Proof. Note that f is continuous on D and hence attains a maximum, say, at $\xi \in D$. If there is an extreme point whose objective is equal to $f(\xi)$, then the result is at hand. Otherwise, let x_1, \ldots, x_k be the extreme points of D, and assume that $f(\xi) > f(x_j)$ for $j = 1, \ldots, k$. By representation of points in $D, \xi \in D$ can be represented as $\xi = \lambda_1 x_1 + \cdots + \lambda_k x_k$, where $\lambda_1 + \cdots + \lambda_k = 1$ for $\lambda_j \geq 0$ $(j = 1, \ldots, k)$. Since $f(\xi) > f(x_j)$ for each $j = 1, \ldots, k$ we obtain

(2)
$$f(\xi) > \max_{j=1,\dots,k} f(x_j) := \max\{a, g(a, a)\}.$$

Now consider the sets $g(D_a)$ with (G1) for some level increasing function $g: \mathbb{R}^2 \to \mathbb{R}$. Note that $x_j \in g(D_a)$ for $j = 1, \ldots, k$ and by general convexity of f (Theorem 1) the set $g(D_a)$ is convex. Hence, $\xi = \lambda_1 x_1 + \cdots + \lambda_k x_k$ belongs to $g(D_a)$, i.e.,

$$\max \left\{ f(\xi), g(f(\xi), f(\xi)) \right\} \le \max \{a, g(a, a)\}.$$

This implies that $f(\xi) \leq \max\{a, g(a, a)\}$ which contradicts (2). This contradiction shows that $f(\xi) = f(x_j)$ for some extreme point x_j . The proof is complete.

We notice that quasiconvex functions are, de facto, general convex functions. Thus we obtain directly as an immediate consequence of Theorem 2 and corresponding result for quasiconvex functions. This mean that the maximum of a quasiconvex function over a compact polyhedral set occurs at an extreme point.

3. General level sets

In what follows we assume that D is a nonempty convex subset of \mathbb{R}^n and ε is a positive constant. Recall that a function $f:D\to\mathbb{R}$ is said to be ε -quasiconvex if

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\} + \varepsilon$$

for all $x, y \in D$, and all $\lambda \in [0, 1]$. For $\varepsilon = 0$ this definition reduces to that of **quasiconvex function**, cf. Roberts-Varberg [4].

Recall that a function $f: D \to \mathbb{R}$ is said to be ε -general convex if for some $\varepsilon > 0$ there is a function $g: f(D)^2 \to \mathbb{R}$ such that

(M)
$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y), g(f(x), f(y))\} + \varepsilon$$

for all $x, y \in D$ and for all $\lambda \in [0, 1]$. For $\varepsilon = 0$ this definition reduces to that of general convex function.

On the other hand, the function $g: \mathbb{R}^2 \to \mathbb{R}$ is ε -level increasing if it is increasing and with the property

$$g\left(\max\left\{x,g(x,x)\right\}+\varepsilon,\max\left\{x,g(x,x)\right\}+\varepsilon\right)\leq \max\left\{x,g(x,x)\right\}+\varepsilon$$

for every $x \in \mathbb{R}$ and $\varepsilon > 0$.

Assume that $f: D \to \mathbb{R}$ is a ε -general convex function for some ε -level increasing function $g: \mathbb{R}^2 \to \mathbb{R}$ and consider the general level sets

$$g(L_a) := \left\{ x \in D \middle| \max \left\{ f(x), g(f(x), f(x)) \right\} \le a \right\}$$

for $a \in \mathbb{R}$. It is clear that $\bigcup_{a \in \mathbb{R}} g(L_a) = D$ and $g(L_a) \subset g(L_b)$ whenever $a \leq b$. We notice, the set $g(L_a)$ is called **general level set**.

We are now in a position to formulate the following statement with which we precision and expand a fact (a comment) in [5].

Theorem 3. Let $D \subset \mathbb{R}^n$ be a nonempty convex set, and let $f: D \to \mathbb{R}$ be a ε -general convex function for some ε -level increasing function $g: \mathbb{R}^2 \to \mathbb{R}$ $\to \mathbb{R}$. If $x_1, \ldots, x_{m+1} \in g(L_a)$ for $m \in \mathbb{N}$, $a \in \mathbb{R}$ and $\lambda_1 + \cdots + \lambda_{m+1} = 1$, $(\lambda_1, \ldots, \lambda_{m+1} \in [0, 1])$, then

$$\lambda_1 x_1 + \dots + \lambda_{m+1} x_{m+1} \in g\left(L_{\max\{a,g(a,a)\}+\varepsilon k(m)}\right),$$

where $k(m) = 1 + [\log_2 m]$.

Proof. If $x, y \in g(L_a)$ and $\lambda_1 + \lambda_2 = 1$ $(\lambda_1, \lambda_2 \in [0, 1])$ we have $\max\{f(x), g(f(x), f(x))\} \leq a$, and $\max\{f(y), g(f(y), f(y))\} \leq a$. From inequality (M) for $z = \lambda_1 x + \lambda_2 y$ we obtain

$$f(z) \le \max \{f(x), f(y), g(f(x), f(y))\} + \varepsilon \le \max \{a, g(a, a)\} + \varepsilon.$$

By ε -level increasing of $g: \mathbb{R}^2 \to \mathbb{R}$ we obtain

$$g(f(z), f(z)) \le$$

$$\leq g\Big(\max\{a,g(a,a)\}+\varepsilon,\max\{a,g(a,a)\}+\varepsilon\Big)\leq \max\{a,g(a,a)\}+\varepsilon.$$

This means that $\max\{f(z), g(f(z), f(z))\} \leq \max\{a, g(a, a)\} + \varepsilon$, i.e., $z = \lambda_1 x + \lambda_2 y \in g\left(L_{\max\{a, g(a, a)\} + \varepsilon}\right)$. By induction we can show that

(3)
$$\lambda_1 x_1 + \dots + \lambda_{2^r} x_{2^r} \in g\left(L_{\max\{a, q(a, a)\} + \varepsilon r}\right)$$

for all $r \in \mathbb{N}$, for $x_1, \ldots, x_{2^r} \in D$ and $\lambda_1, \ldots, \lambda_{2^r} \in [0, 1]$ with $\lambda_1 + \cdots + \lambda_{2^r} = 1$. Fix an $m \in \mathbb{N}$ and assume that $x_1, \ldots, x_m \in D$ with $\lambda_1, \ldots, \lambda_m \in [0, 1]$ and $\lambda_1 + \cdots + \lambda_m = 1$. Take the minimal $r \in \mathbb{N}$ such that $m + 1 \leq 2^r$. One can easily check that $r = [\log_2 m] + 1 := k(m)$. In the case $m + 1 < 2^r$, let us put $\lambda_{m+2} = \cdots = \lambda_{2^r} = 0$ and $x_{m+2} = \cdots = x_{2^r} := x_1$. Then by preceding facts and (3), we obtain

$$\lambda_1 x_1 + \dots + \lambda_{m+1} x_{m+1} =$$

$$= \lambda_1 x_1 + \dots + \lambda_{2^r} x_{2^r} \in g\left(L_{\max\{a,g(a,a)\}+\varepsilon k(m)}\right).$$

The proof is complete.

From Theorem 3 we are now in a position to formulate the following directly consequence for quasiconvex functions.

Corollary 4. (Nikodem [3]). Let $D \subset \mathbb{R}^n$ be a nonempty convex set, and let $f: D \to \mathbb{R}$ be a ε -quasiconvex function. If $x_1, \ldots, x_{m+1} \in L_a$ for $m \in \mathbb{N}$, $a \in \mathbb{R}$ and $\lambda_1 + \cdots + \lambda_{m+1} = 1$ $(\lambda_1, \ldots, \lambda_{m+1} \in [0, 1])$, then

$$\lambda_1 x_1 + \dots + \lambda_{m+1} x_{m+1} \in L_{a+\varepsilon k(m)},$$

for $k(m) := 1 + [\log_2 m]$.

Proof. If to teasing on the ε -quasiconvex class functions taking that $g(f(x), f(y)) = \max\{f(x), f(y)\}$ from Theorem 3 we obtain directly this statement, because in this case $g(L_a) = L_a$. The proof is complete.

4. References

- B. de Finetti: Sulle stratificazioni convesse, Ann.Mat.Pura Appl., 30 (1949), 173-183.
- [2] W. Fenchel: Convex Cones, Sets and Functions (mimeographed lecture notes), Princeton Univ. Press, Princeton, New Jersey, 1953.
- [3] K. Nikodem: Approximately quasiconvex functions, C. R. Math. Rep. Acad. Sci. Canada, 10 (1988), 291-294.
- [4] A. W. Roberts and D. E. Varberg: Convex functions, Academic Press, New York and London, 1973.
- [5] M. R. Tasković: General convex functions, Math.Japonica, 37 (1992), 367-372.

Matematički fakultet 11000 Beograd, P.O. Box 550 Yugoslavia

Received January 27, 1997.